skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract. Isoprene-derived secondary organic aerosol (iSOA) is a significantcontributor to organic carbon (OC) in some forested regions, such astropical rainforests and the Southeastern US. However, its contribution toorganic aerosol in urban areas that have high levels of anthropogenicpollutants is poorly understood. In this study, we examined the formation ofanthropogenically influenced iSOA during summer in Beijing, China. Localisoprene emissions and high levels of anthropogenic pollutants, inparticular NOx and particulate SO42-, led to the formation ofiSOA under both high- and low-NO oxidation conditions, with significantheterogeneous transformations of isoprene-derived oxidation products toparticulate organosulfates (OSs) and nitrooxy-organosulfates (NOSs).Ultra-high-performance liquid chromatography coupled to high-resolution massspectrometry was combined with a rapid automated data processing techniqueto quantify 31 proposed iSOA tracers in offline PM2.5 filterextracts. The co-elution of the inorganic ions in the extracts caused matrixeffects that impacted two authentic standards differently. The averageconcentration of iSOA OSs and NOSs was 82.5 ng m−3, which was around 3 timeshigher than the observed concentrations of their oxygenated precursors(2-methyltetrols and 2-methylglyceric acid). OS formation was dependant onboth photochemistry and the sulfate available for reactive uptake, as shown by astrong correlation with the product of ozone (O3) and particulatesulfate (SO42-). A greater proportion of high-NO OS products wereobserved in Beijing compared with previous studies in less pollutedenvironments. The iSOA-derived OSs and NOSs represented 0.62 %of the oxidized organic aerosol measured by aerosol mass spectrometry on average, butthis increased to ∼3 % on certain days. These resultsindicate for the first time that iSOA formation in urban Beijing is stronglycontrolled by anthropogenic emissions and results in extensive conversion toOS products from heterogenous reactions. 
    more » « less
  3. null (Ed.)
    Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive air quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area. 
    more » « less
  4. Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacteriumStigmatella aurantiaca(SaBphP1) and reveals its role in the fruiting-body formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium. 
    more » « less